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Performing an analysis similar to that in /a/. we obtain that the function (2.2) in 
this example has the form 

Then, if a<O,b<o,p>o, and yl:a<o/b, Theorem 2 is applicable, and it guarantees com- 
plete controllability of process (4.4). 
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THE EXISTENCE AND STABILITY OF INVARIANT SETS OF DYNAMICAL SYSTEMS* 

A.A. BUROV and A.V. KARAPETYAN 

The possibility of using Lyapunov functions to construct invariant sets 
of dynamical systems is discussed. The investigations presented herein 
are based on certain ideas known from the literature /l-11/ and 
culminate in a generalization of Routh's Theorem and its modification 
/l-6, 12, 13/. 

1. Consider a dynamical system whose behaviour is described by ordinary differential 
equations of the following form: 

x' = f (x) (x E R”, f (x) E C': R”+ R”) 
(1.1) 

Assume that Eqs.(l.l) have first integrals which do not depend explicitly on time: 

U (x) = e (c E R*, U (x) E C*: R” - Rk) (1.2) 

'~PrikZ.Matem.Mekhan.,54,6,905-913,1990 
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Given an arbitrary function V (x) 6~ Cz: R” -+ R’, we shall say that it takes a stationary 
value at constant values of the first integrals on a set MC R" and is not degenerate on 
that set, if M is the largest connected closed set on which the following equalities hold: 

&V ((us,, = 0, V = m = const, but 6'V IW=O # 0 

Theorem 1.1. If a function V(x) takes a stationary value at constant values of the 
first integrals (1.2) of system (1.1) on a set M,cW' and is not degenerate on that set, 
and its total derivative with respect to time along trajectories of the system 'V'=(grad V,f), 
takes a stationary value on a set N,,cR” and M,c No, then M0 is an invariant set of 
the system. 

Proof. Suppose that the (stationary) value of V on the set M, is me, the corresponding 
constant values of the integrals (1.2) being co. Then MO is determined by the relations 

V, j + &Ufi, j = 09 Ua = GzCt V = m, (f, j = 8f/&Cj) (1.3) 

where h,, . . ., hk are undetermined Lagrange multipliers. In this section i,j = 1, . . . . n; a, 
/3 = 1, . . ., k < n, with the summation assumed throughout over repeated indices. 

The set N, is determined by the relations 

V, ijf* f V, jfji = 0 (V, ij = awa~,axj) (1.4) 

and, moreover (by assumption), M,,EN,. Consequently (see (1.3) and (1.4)), the following 
conditions hold in MO: 

V, ijfj = -v, jfj, i = h@U8.jfj. i (1.5) 

Now, multiplying the left-hand side of the j-th equation in (1.3) by f,, summinq over j and 
using the fact that 

ua, jfj E 0 
(1.6) 

since U, = e, are first integrals, we see that V'vanishes throughout M,. 
Finally, differentiating the identity (1.6) with respect to x1, we get 

Ucc, ijfj + ua, jfj. i f 0 

whence it follows (see also (1.5)) that on .W, 

Thus, all the Eqs.(1.3) that determine IIf,. are invariant, and the function V is not 
degenerate on the set; in other words, MO is an invariant set. 

Remark 1.1. Real solutions of system (1.1) in M, will be called stationary solutions, 
since they impart stationary values to the function V (at constant values of the first in- 
tegrals) and to its total derivative with respect to time. In the general case such station- 
ary solutions are time-dependent, but if dimM,= 0 they are simply the singular points of 
system (1.1). 

Remark 1.2. The invariant set M, over which V and its total time derivative take 
stationary values at constant values of the first integrals depends on these constants values; 
the stationary solutions x'(t)= M,(c) depend in addition on the initial conditions X-EM,,(C). 
Hence the stationary solutions x"(t,c.x") form a family of dimension not less than the sum of 
the number of arbitrary constants among c which are independent for M,(e) and the number of 
arbitrary initial conditions among x0 czMo(c) which are independent for X0 (t. e, x”) ; the 
function V’ vanishes, of course, on this family. 

Remark 1.3. The function V (for fixed values of cl and its total time derivative may 
take stationary values not only on the sets MO and N,,respectively, but also, in general, 
on sets M, and N,(M,c~,).M, and N,(M,cAV,),.... To the sets M,, MD... there correspond 
(by assumption) the same values of the constants c, but generally different values of V 
(obviously, V. vanishes, as before, on all these sets). The sets M1,M,,... also depend on 
the constants c, while the stationary solutions xp (f. e, zh) C Mk (k = 1, 2, .) form families of 
appropriate dimensions. 

2. The stability of the invariant sets of system (1.1) (stationary solutions) described 
in Sect.1 can be investigated using Lyapunov's direct method, by means of the following 
theorems, which are analogues of Routh's Theorem /l-6/ and its modification /12, 13/: 

Theorem 2.1. If a function V(x) has a local strict minimum (maximum) at constant 
values co of the first integrals of the system on a compact set MO W. and its total time 
derivative V along the trajectories of the system has a local maximum (minimum) on the same 
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set, then HO(eO) is a stable invariant set (and in that case any stationary solution x0 (t)c 
&I0 (eO) is stable with respect to d&(x, MO(@))). 

Theorem 2.2. If a function v (x) takes a local strict minimum (maximum) at constant 
values co of the first integrals on a compact set Jf0 (co), and its total time derivative I" 
along the trajectories of the system has a local maximum (minimum) on the family of sets 
Mil (e) for all e sufficiently close to 8, then -llO(c”) is a stable invariant set, and every 
solution sufficiently close to the invariant set M, (co) tends asymptotically as t+ DO to 
the set M0 (c) for the perturbed values of the first integrals (and in that case any sol- 
ution x0 (t) C M, (co) is asymptotically stable with respect to dist (x, AI,, (c)) ) ; if, addition- 
ally, the constant integrals are not perturbed, then M,(e") is an asymptotically stable 
invariant set (and in that case any solution x0 it) r X0 (8) is asymptotically stable with 
respect to dist (x, M0 (CO))). 

Theorem 2.3. If a function V(x) does not have even a non-strict minimum (maximum) at 
constant values c"of the first integrals of the system on a compact invaraint set A{, (e?). 
but its total time derivative along trajectories of the system has a local strict naxi~um 
(minimum) on the family of sets A& (c) for all c sufficiently close to co, then M,,(c') 
is an unstable invariant set. 

Remarks. 2.1. It is not assumed in the statements of Theorems 2.1 and 2.2 that V is 
non-degenerate on M,. because if V and its total derivative i" have extrema (with opposite 
signs) on MO, the invariance of the latter can be proved without this condition (see below). 

2.2. The invariance of the set M, (C') referred to in Theorem 2.3 is understood in the 
sense that w, (c") satisfies the conditions of Theorem 1.1. 

We will first prove Theorem 2.1. Let the set M,(c") give V(x) a minimum at constant 
values c' of the first integrals (1.2): denote the minimum in question by m,(c'). Similarly, 
let v' have a maximum - which is obviously zero (see Sect.1). 

Consider an arbitrary solution x0(t) of system (1.1) with initial data x0 (to) il M0 (c") 
satisfying the conditions 

u (x" (to)) = co (3.1) 

Obviously, U(x"(t))~ co, since U(x)= c are first integrals. When that happens we 
have V(X" (t))> m,(c"f, since by assumption no (c") is a minimum of V(x) at fixed values 
Co of the constants c of the integrals (1.2). 

On the other hand, V'(Y'(t)).<O, since by assumption zero is a maximum of V.(x). i.e., 

1. (x” (f)) =c I- (x” (5,)) -+ j I” (2 (t)) cEt < m, (c”) 

Consequently, 
minims m,(co) on 

Thus, n/r, (c") 
compactness of the 

To prove that 

v (x0 (t)) =z m, (c”) and so (t) c Mfi (cZ) Vt > t,, 
Ma (c”). 
is an invariant set (note that this is proved 
set M, (co)) . 
the set M, (c") is stable, we consider a set 

dist (x, 51, (c")) 7 F 

where a>0 is sufficiently small (but finite). Since the set 
(2.2) is also compact and the continuous function V(x)- m,(c”) 
this set by a negative number -crl(ol'~ 0). Now, if the variables 

M0 (c') is compact, the set 
is always bounded below on 
x satisfy the relations 

U (x) = c", we have V(x) - no(C)> u,>O on the same set, because V(x) has a strict 

minimum m,(cO) on the set M,(8) at constant values e3 of the integrals (1.2). By con- 

tinuitv. there _. exist positive number ~3 and 134 such that, whenever l/U - c"i/<%, then 
V - m, (co) > (Jo. Then, choosing the positive number P < o&1, we see that the function 

W = u (V - m0 (c”)) -F II U - Co II 

is bounded below by a positive number c< min (as - a,~, pal) on the set (2.2). For this 
number o, we can determine a number 6 such that the domain 

dist (x, M, (cc)) < 6 (2.3j 

lies entirely in the interior of the domain W<c, which in turn is contained in the 
interior of the domain 

dist (x, M, (c")) < E (2.1) 

Since W is a non-increasing function in this domain (W’= pv'<O, because by assumption 
v' has a maximum, equal to zero, on the set M,(c")), it follows that any perturbed solution 
of system (1.1) with initial data in the domain (2.3) will not leave the domain w<o or, 
a fortiori, the domain (2.4). Hence MO(co) is a stable invariant set. 

since V(x) has the strict 

without appeal to the 

(X) 



We will now prove Theorem 2.2. By Theorem 2.1, MO(C) is a stable invariant set, 
such that any real solution x0 (t) c M. (co) is stable with respect to dist (x, MO (CO)). Thus, 
any perturbed solution x 0) of system (1.1) lies entirely within the domain (2.41, however 
small the positive number E, provided that the following inequality holds at the starting 
time to (see (2.3)): 

II x ($J - x0 t&J II < A = 6 (s) 

Since v'(x) has a local strict maximum on the family of sets M,(c) for all c 
sufficiently close to co, and this maximum is zero, it follows that E>O can be chosen 
so small (but finite) that there will be no points in the domain (2.4) belonging to other 
invariant sets M,(c), M,(e), . . . . distinct from JV8 (c), if such sets exist (as already 
pointed out, V’(x) vanishes on any such set). 

Since V(x(t)) is a non-increasing function in the domain (2.41, it must approach a 
limiting value u,, never falling below that value: 

v 2 % (2.5) 

Suppose that the perturbed solution x(t) does not approach M,,(c). Then there exists 
a sequence of points 

XP = ~(8~ + pz) (p = p,.pz, . ..; pt.<pa< . ..; 7 = const > 0) (2.6) 

such that dist (xp, nif, (c)J > JJ > 0, where y is some number, possibly small, but finite. 
Considering the sequence (2.6) in the bounded domain (2.4), we can extract a subsequence 

x8 = x (t -t- ss) (s = ps,r ps,, * * .; Sl -=z s* ==z . . .) (2.7) 

which converges to some point x*,such that (by continuity) 

Y (x*) = u,, dist (x*, M, (c)) > y 

Now consider solutions x* (t) and xs (t) emanating at the starting time from points 
x* and x8, respectively. Since dist (x*, MO (c)) > y and T/'sO (in the domain (2.4)) 
only when x E M,(c), there must exist a time t1 > kl such that 

v (x* @I)) = u1 < &I (2.8) 

Next, since the sequence x" converges to x*, it follows (since the solutions depend 
continuously on the initial data1 that 

II xx (t3 - x" (tJ II C a, Vs > s* (a) 

for any prescribed number a>O. 
Then (by continuity) 

I v (x9, h)) - V (x* (t&j I < 6, Vs > se (a) 5 s* (a (p)) E s* (p) 

for any prescribed number p>O. 
Choosing p> V* - u,, we obtain the inequality 

v (x" @I)) < v1 -I- B < &I 
which may be rewritten in the form 

v (x (11 + a)) < VI), vs > s* (2.9) 

because the right-hand sides of system (1.1) are independent of time and therefore x" (&) 55 
x (tr -t $+r). 

Obviously, inequality (2.9) contradicts (2.5), i.e., our assumption must be false. 
Hence any perturbed solution x(t) sufficiently close to the invariant set M0 (co) (see 
(2.4)) tends as t+ ~0 to a set M,(c) corresponding to perturbed constant values of the 
first integrals (1.2): e = U(x(tJ). 

If the constants of the integrals (1.2) are not perturbed, we conclude, repeating the 
procedure outlined above, that the perturbed solution tends to the set MO (8) as t+oo. 

Finally, let us prove Theorem 2.3, assuming that the function V(x) does not have even 
a non-strict minimum on M,(c*), but V’(x) has a local strict maximum on the family of sets 
M,(c). The function Y(x)- m,(o*) may then become negative in the neighbourhood of ~~(e"~. 

Consider a perturbed solution x(t) with initial data satisfying (2.11, such that 

v (x (0 < WI (c% II x (&I) - x0 (4) II c 6 

where S>O is arbitrarily small (x"(tJ~ M,). Under these conditions, of course, 

dist (x (G, M0 (@I) > 0 (2.10) 

since otherwise x (4) E. M,, (e") and V (x (t,)) = mO (8). 
Suppose that x (tf never leaves the domain (2.4). where E>O is some sufficiently 

small (but finite) number. As before, choose C so small that the domain (2.4) contains no 



points of other invariant sets .W1(c),,%I,(c), . . . . if such exist. Then v' (x (t)) < 0. 
The function V(x(t)) is bounded in the domain (2.4) and, since it is a decreasing 

function, it must have a limit, remaining constantly not less than the limit (see inequality 
(2.5)). Since x (t) G M, (co) (see (2.10)), there exists a sequence (2.6) such that dist (x", 
.!I, (0")) > y > 0, where y it some possibly small but finite number; in the bounded domain 
(2.4) we can extract from this sequence a subsequence (2.7) which converges to some point x*, 
where, by continuity, 

dist (x*, M, (c")) > v V(xS) = Lo 

Now consider solutions x* (t) and xs (t) emanating at the starting time from points x* 
and x", respectively. Since x* G M,(c"), there is a time t, > t, at which inequality (2.8) 
is satisfied. Repeating the procedure outlined in the proof of Theorem 2.2, we obtain (2.9), 
contradicting (2.5). This means that our assumption was false, i.e., the invariant set 

fif, (c") is unstable. 
Under these conditions, clearly, the following is a sufficient condition for any solution 

x' (t) c MO (CO) to be unstable: there exists a time t, such that an arbitrarily small 

neighbourhood of the point x0 (t*) E MO (c"), contains points x E R" for which v (x) - 
m, (c") < 0 (in particular, if V(x) has a maximum (minimum) on the set M, (c") (at constant 

co), then, all other assumptions of Theorem 2.3 being valid, all solutions x0 (t) c M, (CO) 
are unstable). 

3. The results presented above can obviously be extended to systems of type (1.1) with 
no first integrals. In rigorous terms, we have the following theorems. 

Theorem 3.1. If a function V(X)E C”: R" + R 1 takes a stationary value on some set 

.lf,, z R”, where rank (PV/cYx2) = n - dim M,, and the total time derivative of the function 
along trajectories of system (1.11, V' = (grad V, f>, takes a stationary value on a set I%',, 
such that dW,, c N,, then MOis an invariant set of the system. 

Theorem 3.2. If a function V(x) has a local strict minimum (maximum) on a compact 

set MO,, and its total time derivative along trajectories of system (1.1) has a /strict/ 
local maximum (minimum) on the same set, then M, is an /asymptotically/ stable invariant 
set (and in that case any stationary solution xs (t) ‘E .Wo is /astmptotically/ stable with 

respect to dist (x, M,)). 

Theorem 3.3. If some function V(x) does not have even a non-strict minimum (maximum) 

on a compact invariant set M,,but its total time derivative alongtrajectories of system 

(1.1) has a local strict maximum (minimum) on A%f0, then .W,, is an unstable invariant set. 

Remarks. 3.1. Theorem 3.2 states, in particular, that the main stability theorem of 
Lyapunov's direct method furnishes conditions not only for the stability of given solutions, 
but also for the existence of stable solutions of dynamical systems; an analogous remark 
holds with regard to Theorems 2.1 and 2.2 for systems with known first integrals. 

3.2. If V and I" take uniformly extremal values on M, (of appropriate signs), the 
assumption in Theorems 3.2 and 3.3 that this set is compact may be dropped. 

Example . Consider the motion of a rigid body about its centre of mass. Let I = diag (I,, 

I?. I,) be the principal central tensor of inertia and M = (M,, M,, MJ the angular momentum 

vector. All vector and tensor quantities are specified in terms of their projections on the 
principal axes of inertia. The equations of motion of the body about its centre of mass, 

driven by forces with a torque Q, are 

d,' = I,, % dIl.'iiM -1 Q (II : 1:) (/,-'X, 12-'M,? I,$-“u,2)) (3.1) 

Let Q -- (M1q. p. M,q). where Y(M) and PChl) are smooth functions, I,<I,<I,, F= (I,-‘- 

I,-‘) Al,‘! 4 (I:,-’ - I,-‘) M,%. 

The function 1. 1# defines an invariant set M,,n (F- 0) which is not a manifold. 

If q+. 11 in a neighbourhood of the invariant set M,, thenit is stable in Lyapunov's sense; 

if q<u or ri> o. and moreover lim q(M)? 0 as P - 0, then M, is asymptotically stable 

or unstable, respectively. 

4. Let Fi(x) (i : 0, . . . . 1) be first integrals as in (1.2), where the functions Fi are 
assumed to be homogeneous in the generalized sense: 

(a~~,&r).Kz = xiF,, Yc E R”, K mu diag (kl, . . I;,) (4.I) 
Consider the system of equations 

x' = f(x)+ Kxcp(x) (5.2) 

where q: R”+R is an arbitrary continuous function. 

Proposition 4.1. The domains {Fi> 0), {Fi< 0) and surfaces {Fi = 0) are invaraint 
under the action of the flow (4.2). 
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The system of Eqs.(4.2) has 1 general, time-independent first integrals. If 'p(x)=0 

(F*, . . ., F,h the system also has a conditional first integral which depends explicitly on 
time. 

Proof. Differentiate the functions Fi along trajectories of system (4.2). The func- 
tions Pi are first integrals of Eqs.(l.l) and satisfy (4.1). Then 

Consequently, 

dFi,‘dt = (?3F,/‘c?.r). (f (x) i_ Kxcp (x)) E xiFiv (n) (4.3) 

and the functions Fi maintain their signs on any solution of Eqs.(4.2). Hence the domains 

Vi > 01, Pi-== 0) and surfaces {Pi = 0) are invariant under the flow (4.2). This proves 
the first part of the proposition. 

Let us investigate the function 

J,, = IF, IVlFq IXp, p, p = 0, . . . . 1 (4.4) 

on the setGPg = {F&)+0) n {&(X)#O}. BY (4.3), we see that along trajectories of system 
(4.2) 

dJ,,/dt = (~~signF,,IF~/%* dF,/dtIF,l”~- 

;(p sign F, 1 F, f+‘dF,,‘dt 1 F,, 1%) 1 Fq I-% s 0 

and the functions JPp are first integrals in the domains G,,. The functions Fi are first 
integrals on the surfaces {Fi : 0). Consequently, if L = (0, ..,, 2) and a is any subset of 
L, then on the set 

the functions F1 (i E a) and JlOl where CT is the least element of I% iEP\ (6 
form a system of 2 independent first integrals II(r,& . . ..iI(rog). This proves the second 
part of the proposition. 

Let us now fix a joint level of the first integrals IP(I'& 

Then, solving 
quently, on rni3, 

The function 

which is a general 
depends explicitly 

J = {X: Fj = 0, i E U; Jjo = qj, j E p \ IO} (4.5) 

(4.5) for iE@\{u} as equations in F,, we have F, = Vj(F,,qj). Conse- 

g, (F,, . . .> F*) G Q, (FN, gjfv i E 8 \ ((31 cw 

dFo/dt = xd'oQ, (Fat qj) 

Jo (Fa (XI, & C'j) = 0 (4.7) 

integral of (4.6), defines a conditional first integral of Eqs.(4.2) which 
on time, which it was required to prove. 

Proposition 4.2. Assume that the function f(x) on the right of Eqs.(l.l) satisfies 
the condition 

fi(6121,...,6,~,)=6~.....6Y,'nfi(51,...rZ,), Vxt?A" 

Then, if 

i kjyij - ki E a = const, 
j=1 

YifS(l,...,n) 

Eq.(4.2) may be reduced, by a suitable transformation of the space and time variables, to the 
form (1.1) in the domain R*\ (x: F1 = 0, i = 0, . . . . I}. 

Proof. 
In th2 domain 

Let Fi be any of the first integrals of Eqs.(l.l) which satisfy (4.11, say F,. 
{F,>O} we seek a change of variables in the form 

5, = AiF,oL’yi, i = 1, . . ., n (4.8) 
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where II,, ai are unknown constants. By (4.3), for solutions of Eqs.(4.2), 

z,'= A,c$y&'cp + A&'$ (4.9) 
Substitute (4.8) and (4.9) into (4.2). By our assumption about the right-hand side of 

Eqs.(l.l), 

Then, if ai = kixo-l, Ai = exp c&i, it follows from the assumptions that Eqs.(4.10) may 
be expressed in the form 

Yi' = Bfi (w, . . ., AA B = exp (a/l(o) FO"'XO (4.11) 

Applying a time transformation t+z such that 

dr = pdt 

we reduce Eqs.(4.11) to the form (1.1). Reasoning in the same way for the domain {F,< 01, 
and then also for the functions F,, . . . . F,, we obtain a collection of transformations apply- 
ing throughout R"\ {x: F,i= 0,i = 0, . . . . Z), as required. 

CoroZZary. If a = 0, system (4.2) can be reduced to the form of (1.1) by one trans- 
formation of the space variables. 

ExampZe. We again consider the motion of a rigid body about its centre of mass. Suppose 
that the forces driving the body have zero torque. Then Eqs.(3.1) have integrals F, : II. F, 

w and are completely integrable 
Now let Q = Mrp (M,. M,. M,), where 'P(M) is a continuous function. In this case Eqs. 

(3.1) have a time-independent first integral 
J, -= U’F, 

Given a fixed level of this integral, {J1 'I,), if it is true that T(M) = @ (p,,~,), we can 
also find a first integral which depends explicitly on time. This integral is obtained from 
the general solution of the equation 

F,' = 2F,Q (F,q,, F,) 

Applying the transformation of space and time variables 

we obtain the Euler equations 

rlK/rlr - K x I-'K 

Eqs.(3.1) with torques of 
body under the action of forces 

cp !z const c/2, Sect.147/). 

this form arise when one is investigating the motion of a 
of resistance. Such equations have been studied for the case 

The idea underlying our investigation of Eqs.(4.2) is similar to that employed by Elliot 

/14/, who considered a similar problem, concerning the reduction of the equations of motion 
of a point in a resistant medium to the canonical form of the Hamilton equations. 

in 
The authors are grateful to A.A. Kosov for useful discussions of the results reported 

this paper. 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 
7. 

8. 

ROUTH E.J., A Treatise on the Stability of a Given State of Motion. Macmillian, London, 
1877. 

ROUTH E.J., The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies, 
6th ed., 1905; reprint: Dover, New York, 1955. 

LYAPUNOV A.M., On Constant Screw Motions of a Rigid Body in a Fluid, Izd. Khar'kov. Mat. 
Obshch., Khar'kov, 1888. 

LYAPUNOV A.M., The General Problem of Stability of Motion, Izd. Khar'kov, Mat. Obshch., 
Khar'kov, 1892. 

SALVADOR1 L., Un osservazione su di un criteria di stabilita de1 Routh. Rend. Accad. Sci. 
Fis. Mat. Sot. Naz. Sci. Lett. Arti, Napoli, 20, 1953. 

SALVADOR1 L., Sulla stabilita de1 movimento. Matematiche. Catania, 24, 1, 1969. 
BARBASHIN E.A. and KRASOVSKII N-N., On stability of motion in the large. Dokl. Akad. Nauk 

SSSR, 86, 3, 1952. 
KRASOVSKII N-N., Some Problems of the Theory of Stability of Motion, Fizmatgiz, Moscow, 

1959. 



751 

9. MATROSOV V.M., On stability of sets of non-isolated equilibrium positions of non-auto- 
nomous systems. Trudy Kazan. Aviats. Inst., 39, 1965. 

10. RUMYANTSEV V.V., On stability of motion with respect to some of the variables. Vestnik 
Moskov. Gos. Univ., Ser. Mat. Mekh., Fiz., Astron., 4, 1957. 

11. RUMYANTSEV V.V., On asymptotic stability and instability of motion with respect to some 
of the variables. Prikl. Mat. Mekh., 35, 1, 1971. 

12. KARAPETYAN A.V. and RUBANOVSKII V.N., On a modification of Routh's Theorem on the 
stability of stationary motions of systems with known first integrals. In: Collection 
of Scientific and Methodological Papers in Theoretical Mechanics, 17, Vysshaya Shkola, 
Moscow, 1986. 

13. KARAPETYAN A.V., Routh's Theorem and its modifications. Trudy Tbilisi Univ. Ser. Mat. 
Mekh., Fiz., Astron., 25, 1988. 

14. APPELL P. Trait& de Mecanique Rationelle, 1, Nauka, Moscow, 1960. 

Translated by D.L. 

PMM ll.S.S.R.,Vol.54,No.6,pp.751-755,199D 
Printed in Great Britain 

0021-8928/90 $lO.OO+O.OO 
01992 Pergamon Press plc 

STEADY MOTIONS AND INTEGRAL MAN1 FOLDS OF SYSTEMS WITH QUADRATIC INTEGRALS* 

V.I. OREKHOV 

An investigation is made of conservative systems with an additional 
integral of motion which is quadratic in the velocity. A method which 
takes into account the specific features of the mechanical problems is 
proposed to describe steady motions and integral surfaces in phase 
space. As an example, a non-holonomic problem, involving the motion of 
a rigid body carrying a gyroscope is considered. 

Topological analysis of mechanical systems with known integrals F,.... ,FI, aims at des- 
scribing the surfaces in phase space defined by fixed values of the integrals and studying 
the bifurcations of these surfaces /l/. The bifurcation points are defined by a dependence 
condition involving the integrals, ZhidFi=O(hi (where hi are Lagrange multipliers), or dFh -0, 
where FL = \‘hiFi is a pencil of integrals with constant coefficients hi. The condition dFh= 0 

is invariant /2/, i.e., it holds along the whole trajectory of the system emanating from a 
critical point of the pencil FL. The motion in this case is said to be steady. Such motions 
have been studied by numerous authors, e.g., /3-7/. In the typical case they form families 
parametrized by the values of the constants hi. 

Thus, topological analysis involves the description of steady motions. When the integrals 
(other than the entry) are linear in the velocity, both problems can be tackled by means of 
reduced potentials /l, 8/. In this paper, consideration will be given to functions which play 
an analogous role for a conservative system with an additional integral which is a quadratic 
function of the velocity. 

1. Let M be a configurational manifold with Riemannian form <.,.>. In order to include 
the non-holonomic case, our phase space will be,an m-dimensional subbundle T'M of the tangent 
bundle TM: at every point XEM the fibre T,M of this subbundle is the space of vel- 
ocities allowable by the constraints (in the holonomic case I".11 = T&1). Assume that the 
integrals are 

H (v) = v&v, v) + V (4, f’(v) = ‘/,(I’v, V> + <a, V> + W (4 

where v E T'M is the velocity vector at the point XEM, V and W are functions of the 
positional variables, F is a symmetric linear bundle operator, and a is a vector field on M. 
We may assume that I? acts from T'M to T'M and that a E T'M; otherwise we replace them 
respectively by ProI- and Pr (a), where PP is the bundle operator of orthogonal projection 
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